在这篇论文,我们在场 circulant 逆 M 矩阵的结构上的有用结果。它被看那是否 nxn 非否定的 circulant 矩阵 A = Circ [c【sub】0【/sub】,c【sub】1【/sub】…, c【sub】n【/sub】-1 ]不是一个积极矩阵并且不等于到 c【sub】0【/sub】I ,如果并且仅当,那么, A 是反的M矩阵在那里存在积极整数 k ,它是 n 的一个合适的因素c【sub】jk【/sub】】 0 为 j = 0 , 1 ,-…,[ n-k/k ],另外的c【sub】i【/sub】是零并且 Circ [c【sub】0【/sub】,c【sub】k【/sub】,…, c【sub】n【/sub】-k ]是反的M矩阵。结果然后被扩大到所谓的概括 circulant 逆 M 矩阵。
In this paper, we present a useful result on the structures of circulant inverse Mmatrices. It is shown that if the n × n nonnegative circulant matrix A = Circ[c0, c1,… , c(n- 1)] is not a positive matrix and not equal to c0I, then A is an inverse M-matrix if and only if there exists a positive integer k, which is a proper factor of n, such that cjk 〉 0 for j=0,1…, [n-k/k], the other ci are zero and Circ[co, ck,… , c(n-k)] is an inverse M-matrix. The result is then extended to the so-called generalized circulant inverse M-matrices.