关于标量双曲守恒型方程式ut+fx=0的黎曼问题u=ul(x〈0),u=ur(x〉0),当f为非凸时解的性质同ur,ul的位置及同曲线f=f(u)的某些核心判别位置Uncl(nucleation criterion)有关.如何决定它,对于求解关系很大.过去文献只对,为非凸三次典型曲线研究过,但尚未明确在一般情形下求解的型式及方法.本文目的是应用更清晰的几何方法寻求当,为4次标量函数时的Uncl,并讨论它与解的性质及型式关系.
The properties of the solutions for the hyperbolic conservative Riemann problems:ut + fx = 0,u = ul (x 〈 0),u = ur (x 〉 0). depend largely on the positions of ur ,ul and the nucleation criterion. This paper describes the determinations of the position of the nucleation criterion and the relations of the properties and types of the solutions for above hyperbolic conservative Riemann problems when f is a classical polynomial of 4th order. It is the generation of the case when f is a 3th order classical polynomial.