在这篇论文,有限元素方法和边界元素方法被联合数字地解决外面的伪线性椭圆形的问题。基于适当转变和 Fourier 系列扩大,线性人工的边界调节的准确的伪并且一系列为给定的问题的相应近似被介绍。然后,原来的问题被简化为在一个围住的计算领域定义的一个相等的问题。我们为 Galerkin 方法提供错误估计。数字结果被介绍说明理论结果。
In this paper, the finite element method and the boundary element method are combined to solve numerically an exterior quasilinear elliptic problem. Based on an appropriate transformation and the Fourier series expansion, the exact quasilinear artificial boundary conditions and a series of the corresponding approximations for the given problem are presented. Then the original problem is reduced into an equivalent problem defined in a bounded computational domain. We provide error estimate for the Galerkin method. Numerical results are presented to illustrate the theoretical results.