位置:成果数据库 > 期刊 > 期刊详情页
一类基于支持向量机的软件故障预测方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116, [2]中国矿业大学信息与电气工程学院,江苏徐州221116
  • 相关基金:国家自然科学基金项目(50534050)资助
中文摘要:

针对基于神经网络的计算机软件故障预测方法中存在的过学习和泛化能力差的问题,提出一种基于支持向量机(SVM)的软件故障预测方法.该方法应用具有强大非线性逼近能力与优秀泛化能力的支持向量机对软件故障因子与软件隐藏故障数之间的非线性关系进行拟合.采用经典粒子群优化算法(CPSO),在测试样本集均方根误差(RMSE)与平均绝对百分比误差(MAPE)同时最小时,选择和优化支持向量机的参数向量.计算机测控软件故障预测实验验证了该方法的可行性和可靠性.

英文摘要:

The traditional forecasting method for computer soft fault based on neural networks has the problems of over-fitting and poor generalization ability.In order to solve the drawbacks,we proposes a new forecasting method Based SVM(support vector machine).The proposed method uses SVM,which has strong nonlinear approximation ability and good generalization ability,to fit the relationship between factors of software fault and hidden number of software fault.We apply CPSO(canonical particle swarm optimization),using the principle of RMSE(root mean square error) and MAPE(mean absolute percentage error) minimization of test sample sets to tune and optimize the parameter vector of SVM.The experimental results of a computer measurement and control software show that the method is feasible and effective.

同期刊论文项目
期刊论文 120 会议论文 25 专利 11 著作 2
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212