考虑在Roesser模型中带有一类广义的Lipschitz非线性部分的不确定2-D Markovian跳跃参数系统的鲁棒镇定问题。在假设不确定的参数范数有界的前提下,设计状态反馈控制器,使得闭环系统对于所有允许的不确定性总是渐近稳定的。运用线性矩阵不等式(LMIs),给出了解决问题的充分条件。通过求解一定的LMIs,得到所需的状态反馈控制器。一个数值算例说明了所提出理论的有效性。
This paper considers the problem of robust stabilization for uncertain 2-D Markovian jump systems in Roesser model with a class of generalized Lipschitz nonlinearities. The parameter uncertainty is assumed to be norm-bounded. The purpose of the problem is to design a state feedback controller such that the resulting closed-loop system is mean square asymptotically stable for all admissible uncertainties. In terms of linear matrix inequalities ( LMIs), a sufficient condition for the solva- bility of the problem is given. A desired state feedback controllers can be constructed by solving certain LMIs. A simulation example shows the effectiveness of the algorithm.