设{X,Xn,n≥1}是同分布的随机变量序列(不必独立),记部分和Sn=∑i=1^nXi,n≥1。获得了max1≤k≤n︱Sk︱/n1/p的尾概率的一个上界,其中00)阶矩存在的充分条件,推广了独立情形相应的结果。
Let{X,Xn ,n≥1}be a sequence of identically distributed random variables (without any in-dependence assumption)and denote Sn =∑i=1^n Xi ,n≥1 .An upper bound for the distribution function of max 1≤k≤n Sk n 1p ,with 0〈p〈1 ,is given.As an application,a sufficient condition for the existence of the r-th (r 〉0)moments of sup n≥1 Sn n 1p is obtained.