位置:成果数据库 > 期刊 > 期刊详情页
集成SVM的回归预测及其遥感应用
  • ISSN号:1673-629X
  • 期刊名称:《计算机技术与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]陕西师范大学计算机科学学院,陕西西安710062
  • 相关基金:国家自然科学基金(40671133)
中文摘要:

为了提高单支持向量机(SVM)回归模型的泛化能力,引入遗传算法(GA)用以搜索SVM的"低偏差区域",给出了一种基于GA的SVM异构集成方法。用此方法对十个典型的数据集进行回归预测,并与单SVM回归结果和Bagging集成回归结果进行了比较,表明这种异构集成方法有较好的泛化能力。将这种方法应用于感兴趣的四个渭河陕西段水质参数的遥感反演,取得了更为精确的预测结果。实验表明,对小样本情况,基于GA的SVM异构集成方法能在付出合理时间花销的条件下,使单SVM的泛化能力得到有效提升。

英文摘要:

To improve the generalization ability of a single SVM regression model,a heterogeneous ensemble approach of SVMs is proposed by employing GA to search low bias region.Ten representative data sets were regressed,comparing with the single SVM regression and Bagging regression,the heterogeneous ensemble approach has achieved stronger generalization ability.Applying this approach to regress four concerned water quality parameters of Wei River,more accurate results were obtained.The experiment show that,with rational time consuming,the GA-based heterogeneous ensemble of SVMs improves the generalization ability of the single SVM effectively when only a small data set is available.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机技术与发展》
  • 中国科技核心期刊
  • 主管单位:陕西省工业和信息化厅
  • 主办单位:陕西省计算机学会
  • 主编:王守智
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:ctad@vip.163.com
  • 电话:029-85522163
  • 国际标准刊号:ISSN:1673-629X
  • 国内统一刊号:ISSN:61-1450/TP
  • 邮发代号:52-127
  • 获奖情况:
  • 《CAJ-CD规范》执行优秀期刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:21263