位置:成果数据库 > 期刊 > 期刊详情页
结合区域生长和GVF-Snake的遥感影像道路提取
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]陕西师范大学计算机科学学院,西安710062
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.40671133) .
中文摘要:

基于待分割目标的灰度特征分布,提出了一种能自适应地改变生长准则参数的区域生长方法。将该自适应区域生长算法与GVF-Snake模型相结合用于高分辨率遥感影像道路提取,即用自适应区域生长方法提取出大致的道路区域,对生长出的道路图,利用数学形态学进行内部腐蚀并获得道路区域轮廓线,以该轮廓线作为GVF-Snake模型的初始轮廓,利用GVF-Snake模型进行道路跟踪,得到最终的道路提取结果。实验结果表明该方法能有效地提取高分辨率遥感影像中的道路目标,具有一定的实用性和鲁棒性。

英文摘要:

Based on the gray characteristic distribution of the objective to be segmented, an adaptive region growing algo-rithm is proposed, which can estimate the parameters of homogeneity criterion automatically.And the region growing algo- rithm with the GVF(Gradient Vector Flow)-snake model is employed to extract roads from high-resolution remote sensing images.In the method, the adaptive region growing algorithm is firstly applied to the preliminary road segmentation,and then mathematical morphology is utilized to eliminate disturbances inside and get the outline of the road in the grown image.Fi- nally, it uses the outline as the initial contour of the GVF-snake model, and applies the model to tracking the road, achiev- ing the final result of the road extraction.Experimental results show that the method is efficient and practical for extracting roads from high-resolution remote sensing images,and has a certain adaptive ability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887