设C是κ-线性范畴,M是C-C双模,定义κ-线性平凡扩张范畴C’=C M,首先证明其为平凡扩张代数的自然推广,其次证明左C’-模范畴等价于左C-模范畴关于张量函子M c-的右平凡扩张范畴(C-Mod) (M c-),推广了经典的平凡扩张代数的模范畴理论.并将此结论应用到女一线性三角矩阵范畴,重新刻画其模范畴的结构.
In this paper, the trivial extension of a κ-linear category is introduced, which is a generalization of the trivial extension of an algebra. Let C' = C M be the trivial extension of a κ-linear category C by a C-bimodule M. It is proved that the left module cate- gory C'-Mod is equivalent to the right trivial extension category (C-Mod) (M c-) ,which generalizes the classical theory on module category of trivial extensions of algebras. When,applying the above result to the k-linear triangular matrix category, it is easy to de- scribe the structure of its module category.