针对一类求解弱非线性互补问题,提出了模系矩阵多分裂迭代算法。通过变量变换,利用互补向量的性质,将互补问题转化为一类与其等价的不动点方程组。在此基础上,建立一种快速、有效的模系矩阵多分裂迭代算法,并分析了算法的收敛性。数值实验证明了算法的有效性。
A modulus-based matrix muti-splitting iteration method for a class of weakly nonlinear complementarity problem is presented.Using the change of variables,the complementary problem is transformed into fixed point equations.Then a modular-based matrix multi-splitting iteration method is established and the convergence of the algorithm is given.Numeri-cal tests show that the method is effective.