SrFe_( 12 )O_( 19 )的弄干的胶化,由柠檬酸盐途径准备了,借助于红外线的光谱学(红外)被调查, therogravimetric 分析( TG ), differentials 装热量测定( DSC ),X---光线衍射( XRD )技术,精力散光谱学(版本),和传播电子显微检查法{ TEM ),热不稳定性和在大约 600 deg 6号元素碳的化学符号使结晶的低温度的锶 M-lype hexaferrite 的热解被 XRD 第一次证实方法。分解低 -- 温度锶 M 类型 hexaferrite 在 DSC 调查决定的大约 688.6 deg 6 号元素碳的化学符号发生了。低温度的锶 M 类型 hexaferrite nanoparticles 象 possibl alpha-Fe_2O_3 一样与一个四角形的房间与 anorthorthombic 房间和 Fe_2O_3 被分解成 SrFeO_(2.5 ) 。有不到 200 运用了的尺寸的 Theagglomerated 粒子在 800 点获得了 deg 6 号元素碳的化学符号是到锶 M 类型 hexaferrite 的 plesiomorphous。有尺寸的热地稳定的锶 M 类型 hexaferrite nanoparticles 不到 100 nm 能发生在 900 deg 6 号元素碳的化学符号。直到 1000 deg 6 号元素碳的化学符号,形成锶 M 类型 hexaferrite 的相变被结束,有多于 l/nm 的尺寸的锻烧我们 alpha-Fe_2O_3 和锶 M 类型 hexaferrite 改组了。有从有由使用粉末 XRD 方法的四角形的房间的 Fe_2O_3 的尖晶石结构的 distinguishinggamma-Fe_2O_3 的方法被建议。有在结晶化前要结晶的四角形的房间的 Fe_2O_3 ofthermally 稳定的锶 M- 类型 hexaferrite 第一次被证实。一个另外的阶段出现在锻烧的原因 whyalpha-Fe_2O_3 是锶 M- 类型 hexaferrite 的猫 ionic 空缺, SrFe_(12x )square_xO_(19 )(0 <=x <=0.5 ) 。
The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).