为了在较低压力下获得较小粒径的细水雾,降低喷雾抑爆系统的运行成本,提高系统的适用性和抑爆效率,自行搭建了尺寸为120mm×120mm×840mm的透明有机玻璃瓦斯爆炸管道实验平台。采用双流体喷嘴将N_2和细水雾送入试验管道,通过调节喷雾压力和喷雾时间开展了双流体细水雾抑制瓦斯爆炸实验研究,从火焰速度、瓦斯爆炸超压2个方面探讨双流体细水雾的抑爆有效性。实验结果表明:N_2双流体细水雾抑爆效果明显,可以减小瓦斯爆炸强度;随着喷雾时间的延长,爆炸火焰的速度峰值逐渐下降,爆炸超压峰值逐渐下降,平均升压速率逐渐降低;当N_2压力为0.4MPa、喷雾时间为3s时,速度峰值比不喷雾时下降60.39%,爆炸超压峰值下降37.76%。
In this work,to obtain a water mist with a finer particle size under lower pressures,reduce the running costs of the explosion-suppressing spray system,and improve its efficiency and applicability,we designed a transparent organic glass pipeline(120mm×120mm×840mm)as the experimental platform for gas explosion.Then N_2 and fine water mist was pressed into the pipeline using a twinfluid nozzle and experimental study of methane explosion suppression by nitrogen twin-fluid water mist was carried out adjusting the spray pressure and spray time and the explosion-suppression effectiveness of the twin-fluid water mist was investigated via analysis of the flame speed and the gas explosion overpressure.The results show that this twin-fluid water mist has a high explosion-suppressing efficiency,capable of reducing the damage degree of gas explosion.With the extension of the spray time,the peak value of the explosion flame speed,the peak overpressure and the average pressure rise rate decreased gradually.When the pressure of N_2 was 0.4MPa and the spray time was 3s,the peak value of the velocity decreased by 60.39%,and the peak overpressure decreased by 37.76%.