目的 通过基因芯片技术研究持续张应力作用下大鼠骨髓基质干细胞(bone marrow stromal cells,BMSCs)成骨分化中基因表达差异。方法 体外分离及培养大鼠BMSCs,使用Flexercell应力加载系统进行频率1 Hz、幅度10 %持续张应力加载6 h。检测持续张应力下大鼠BMSCs差异表达基因谱,并通过qRT-PCR对部分芯片结果进行验证。结果 加力组与对照组相比差异表达基因共有1 244条,其中上调基因793条,下调基因451条。基因本体论(gene ontology, GO)分类发现差异表达基因主要涉及多器官发育、细胞分化、细胞趋化、黏附等功能。Notch、Wnt、FGF及IGF 4条通路可能参与力学诱导下BMSCs成骨分化过程。差异表达基因的PCR验证结果与芯片结果保持一致。结论 张应力可诱导BMSCs骨向分化,而基因芯片筛选出的差异表达基因可能是力学刺激诱导骨向分化的作用靶点。
Objective To evaluate differences in genes expression of rat bone marrow stromal cells (rBMSCs) under continuous mechanical strain by gene microarray technology.Methods rBMSCs were isolated and cultured in vitro. Continuous stresses with amplitude of 10% and frequency of 1 Hz were applied on rBMSCs for 6 hours by Flexercell mechanical loading system to investigate rBMSC gene expression profiles, and quantitative PCR was used to verify gene expression changes related to osteoblastic differentiation. Results Compared with the control group, 1 244 differentially expressed genes were found in mechanical loading group, among which 793 genes were up-regulated, while 451 genes were down-regulated.GO (gene ontology) analysis suggested that differentially expressed genes were mainly involved in multicellular organismal development, cell differentiation, chemotaxis, cell adhesion and so on. Four signaling pathways as Notch, Wnt, FGF and IGF might participate in the regulation of stress-induced osteoblastic differentiation. PCR validation results were consistent with the gene chip results. Conclusions Mechanical stress could induce osteoblastic differentiation of the BMSCs, while several differentially expressed genes screened by gene microarray may attribute to this process.