这篇论文在鼓刹车限制周期摆动(LCO ) 的颤动振幅在系统参数的依赖变化的法律上论述研究。我们建立了一个二度的非线性的动态模型描述鼓刹车的低频率的颤动,使用了中心歧管简化系统的理论,并且由在 Hopf 分叉点计算简化系统的正常形式获得了 LCO 振幅。当磨擦系数是比在分叉点的磨擦系数小的时,振幅减少,这被显示;而与比分叉的磨擦系数大的一个磨擦系数指, LCO 发生。结果建议由改变系统的参数压制 LCO 振幅是适用的,并且当使用刹车时,因此改进安全和旅行舒适。这些调查结果能被用于指导鼓刹车的设计。
This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.