位置:成果数据库 > 期刊 > 期刊详情页
Vibration response analysis of 2-DOF locally nonlinear systems based on the theory of modal superposition
  • ISSN号:1671-8224
  • 期刊名称:《重庆大学学报:英文版》
  • 时间:0
  • 分类:O322[理学—一般力学与力学基础;理学—力学]
  • 作者机构:[1]School of Mechanical Science & Engineenng, Huazhong University of Science & Technology, Wuhan 430074, P. R. China, [2]Xiangfan University, Xiangfan 441003, P. R. China
  • 相关基金:Funded by the National Science Foundation of China (No.50075029).Acknowledgements The first author is grateful to CHEN Zuo-rong, doctor of the School of Materials Science and Engineering, University of Sydney, and Joan Rosenthal, an editor in Sydney. This work was supported in part by Jiangling Motors Co., Ltd. Finally, the first author gratefully acknowledges thevaluable comments of the referees of this paper.
中文摘要:

同时包含二次的非线性的僵硬的许多重要颤动现象并且抑制在实际 circumstances.In 下面在复杂颤动系统存在这份报纸,我们建立了 2-degree-of-freedom ( DOF )为如此的一个系统的非线性的颤动模型,推出了管理它的动力学的运动的微分方程,并且基于杂木林的理论由非线性的正常模式( NLNM )的重叠的原则为管理方程得出了答案不变

英文摘要:

Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw's theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《重庆大学学报:英文版》
  • 主管单位:国家教育部
  • 主办单位:重庆大学
  • 主编:李晓红
  • 地址:重庆市沙坪坝区沙正街174号重庆大学A区期刊社
  • 邮编:400030
  • 邮箱:xbyw@cqu.edu.cn
  • 电话:023-65112204
  • 国际标准刊号:ISSN:1671-8224
  • 国内统一刊号:ISSN:50-1142/N
  • 邮发代号:
  • 获奖情况:
  • 2007、2008年重庆市一级期刊,重庆市新闻出版局综合质量考评一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库
  • 被引量:23