本文研究了由Cantor展式所确定的一类Besicovitch-Eggleston子集.应用Billingsley定理,得到了这类集合的维数.并且表明无穷符号空间和有限符号空间上的Besicovitch-Eggleston子集的性质是有区别的.
In this article,we study the Hausdorff dimension of Besicovitch-Eggleston subsets in the Cantor expansion.By applying Billingsley's theorem,the result indicates that the properties of Besicovitch-Eggleston subsets in infinite symbolic space are different from those in finite symbolic space.