针对稳定分布环境下非平稳过程分析方法时频滑动平均(TFMA)模型算法的退化,引入分数低阶统计量共变,提出了一种改进的分数低阶时频时频滑动平均(FLO-TFMA)模型算法。推导了FLO-TFMA模型的参数求解过程,给出了基于FLO-TFMA模型的时频谱估计。通过在稳定分布环境下对TFMA模型算法和所提出的FLO-TFMA模型算法的参数估计均方误差(MSE)比较和时频谱估计比较,仿真结果表明,FLO-TFMA模型算法的参数估计精度优于TFMA模型算法,TFMA模型时频谱估计完全失效,而FLO-TFMA模型时频谱算法能较好地进行时频谱估计。
The Time-Frequency Moving Average(TFMA)model algorithm which is a method of non-stationary signal processing degenerate under α stable distribution environment, the fractional lower order statistics covariance is intro-duced and the improved Fractional Lower Order Time-Frequency Moving Average algorithm(FLO-TFMA)model algo-rithm is proposed. The parameters estimation of FLO-TFMA model is developed and time-frequency spectrum estimation is given based on the FLO-TFMA model. By comparing the Mean Square Error(MSE)of parameter estimation and spec-trum estimation of the TFMA model algorithm and the proposed FLO-TFMA model algorithm under α stable distribution environment condition, simulations show that the parameters estimation precision of the FLO-TFMA model algorithm is better than TFMA model algorithm, the TFMA model spectrum estimation can not work, and FLO-TFMA model algo-rithm provides better performance of time-frequency spectrum.