位置:成果数据库 > 期刊 > 期刊详情页
SAR图像的Gamma混合分布建模方法
  • ISSN号:1003-0530
  • 期刊名称:《信号处理》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]九江学院电子工程学院,九江332005, [2]武汉大学电子信息学院,武汉430072
  • 相关基金:国家自然科学基金项目(61261046)
中文摘要:

随机信号的混合概率模型比单一概率模型有更多的灵活性,更适合复杂的分布建模。当前主要的混合概率模型有高斯混合模型、α分布混合模型和Gamma混合模型等。但高斯混合模型更适合随机变量对称分布的分布建模,而α混合模型参数多、算法复杂。SAR图像的像素值为非负值,且多为斜峰分布,更适合Gamma混合模型建模。仿真分析及数据测试都表明,本文提出的Gamma混合分布建模方法对SAR图像的像素统计分布具有更高的运算效率。

英文摘要:

There are more flexibilities mixtures of multi-distribution models than a single-distribution model for complicated random variables. Gaussian mixture models, alpha-stable mixture models and Gamma mixture models are main hybrid probability distribution ones. Gaussian mixture distributions are fitter for some symmetric distribu- tion random variables and alpha-stable mixture distributions for not only symmetric but also skewed, but more pa- rameters and intricate estimating algorithms are its shortcoming. Pixel values of SAR images are non-negative and skewed distributions, so fit for using Gamma mixture distribution models. Simulation analysis and data tests show that Gamma mixture distribution models have a higher operation efficiency for pixel statistical distribution of SAR image pixel distributions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信号处理》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:谢维信
  • 地址:北京鼓楼西大街41号
  • 邮编:100009
  • 邮箱:xhclfh@sohu.com
  • 电话:010-64010656
  • 国际标准刊号:ISSN:1003-0530
  • 国内统一刊号:ISSN:11-2406/TN
  • 邮发代号:80-531
  • 获奖情况:
  • 国家一级科技期刊
  • 国内外数据库收录:
  • 美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10219