位置:成果数据库 > 期刊 > 期刊详情页
Capacity Region of a Class of Gaussian Cognitive Degraded Broadcast Channel
  • ISSN号:1673-5447
  • 期刊名称:《中国通信:英文版》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]九江学院电子工程学院,九江332005, [2]江西省数控技术与应用重点实验室,九江332005
  • 相关基金:国家自然科学基金(61261046); 江西省自然基金(20142BAB207006,20151BAB207013); 江西省教育厅科技基金(GJJ14739,GJJ14721); 九江学院校级科研项目(2013KJ02,2013KJ01)资助
中文摘要:

针对振动传感器在采集故障信号时,在α稳定分布脉冲噪声的干扰下,使得传统机械故障信号时频盲源分离算法性能退化的问题,提出了一种基于分数低阶和S时频变换的盲源分离新方法。该方法先对传感器测试信号进行分数低阶子空间预白化,再计算低阶化信号的S变换时频分布,最后通过联合近似对角化恢复各个部分的故障源信号。通过计算机仿真实例分析表明,该算法能有效抑制脉冲噪声影响,避免了二阶矩或高阶矩无穷大的缺限,盲源分离效果较好,具有良好的鲁棒性。

英文摘要:

The impulsive noise of α-stable distribution is characterized by the nonexistence of the finite second order or higher statistics. The blind source separation based on time-frequency distribution( TFD-BSS) method was poor invalid under α-stable distributed noise conditions. An improved fractional lower order statistics time-frequency distribution blind source separation algorithm was proposed in this paper. First,the signals were pre-whitening based on fractional lower order statistics and subspace technique,and then the fractional lower order time-frequency distribution of generalized s-transform was computed. Finally,the source signals were obtained by joint approximate digitalization of Eigen-matrices. The simulation results analysis shows that the proposed method is more robust in α-stable distribution interference environments than that of the conventional second order statistics based algorithm.Moreover,the decision overcomes the shortcoming of the second and higher order moment infinity for BSS.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国通信:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:刘复利
  • 地址:北京市东城区广渠门内大街80号6层608
  • 邮编:100062
  • 邮箱:editor@ezcom.cn
  • 电话:010-64553845
  • 国际标准刊号:ISSN:1673-5447
  • 国内统一刊号:ISSN:11-5439/TN
  • 邮发代号:2-539
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:187