位置:成果数据库 > 期刊 > 期刊详情页
利用GLCM纹理分析的高分辨率SAR图像建筑区检测
  • ISSN号:1007-4619
  • 期刊名称:遥感学报
  • 时间:0
  • 页码:483-498
  • 语言:中文
  • 分类:TN957[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]国防科技大学电子科学与工程学院,湖南长沙410073
  • 相关基金:国家自然科学基金(编号:60772045和40801179).
  • 相关项目:SAR图像目标ROI自动获取技术研究
中文摘要:

根据高分辨率SAR图像上建筑区的影像特征,提出了基于灰度共生矩阵(gray-level cooccurrence Matrix,GLCM)纹理分析的建筑区提取方法,该方法由初步定位和边界调整2个步骤组成,均遵循特征计算、基于Bhattacharyya距离的特征选择和KNN分类流程,所不同的是2个步骤中分别采用了逐块和逐点计算纹理特征的方式以兼顾纹理分析的效率和准确性。文中对不同SAR传感器获取的图像进行了实验。实验结果表明,选用具有最大Bhattacharyya距离值的3或4个特征可以获得较好的初步定位结果,建筑区的检测率超过80%,虚警率低于10%;随着边界调整的进行,检测到的建筑区边界逐渐接近于真实边界。实验结果验证了该算法的有效性。

英文摘要:

As the rapidly growing of availability of high-resolution urban SAR images, analysis of urban environments using SAR images has become an important task in the field of SAR image interpretation. Built-up areas are the dominant structures of urban environments. Detecting and analyzing built-up areas has attracted more and more attention of researchers interested in urban SAR image interpretation. In this paper we propose a method of detecting built-up areas from high-resolution SAR images using the GLCM (Gray-Level Cooccurrence Matrix) textural analysis. Our method is composed of two stages: initial localization of built-up areas and boundary adjustment. Both stages follow a flow of feature computation, Bhattacharyya-Distance-based feature selection and KNN (K-Nearest Neighbor) classification. The difference is that a block-by-block feature computation manner is used in the first stage while a pixel-by-pixel one is used in the second stage. Experiments are performed on images obtained by different SAR sensors. The results indicate that the best three or four features, which have the highest Bhattacharyya distance, lead to the high performance of initial localization, with detection rate higher than 80% and false alarm rate lower than 10%. With the boundary adjustment is implemented, the detected built-up-area boundaries gradually get close to the real boundaries. The experimental results of different SAR images show that the proposed method for built-up area detection is promising.

同期刊论文项目
期刊论文 34 会议论文 3
同项目期刊论文
期刊信息
  • 《遥感学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国地理学会环境遥感分会 中国科学院遥感应用研究所
  • 主编:顾行发
  • 地址:北京市安外大屯路中国科学院遥感与地球研究所
  • 邮编:100101
  • 邮箱:jrs@irsa.ac.cn
  • 电话:010-64806643
  • 国际标准刊号:ISSN:1007-4619
  • 国内统一刊号:ISSN:11-3841/TP
  • 邮发代号:82-324
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:16827