位置:成果数据库 > 期刊 > 期刊详情页
一种精简的关联规则表示模型
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP182[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家“863”计划资助项目(2012AA011005); 国家自然科学基金资助项目(61273292)
中文摘要:

针对关联规则之间存在的冗余性问题,已提出多种精简关联规则模型,但这些模型仍不同程度存在紧致度欠佳、信息丢失或恢复算法复杂的问题。提出了一种含更丰富关联信息的基本关联规则,并以基本关联规则为基础构建无损的精简关联规则集合,它是原始关联规则集合的子集,并能据此完全恢复原始关联规则集合。给出了基本关联规则模型的定义,证明了该精简模型的几个重要性质,并设计了用于挖掘该类规则的挖掘算法。实验表明,基本关联规则模型比现有的关联规则精简模型更加紧致。

英文摘要:

In view of the redundancy among the association rules mined from dataset, a variety of concise representatives have been suggested for representing the whole raw association rule set. But there more or less exist deficiencies in these models, such as poor compactness, information loss or complex recovery algorithm and etc. This paper proposed a new concise associa- tion rules representation model based on basic association rule, named as BAR, which contains more rich relation information to construct a lossless representative of raw association rule set. This association rule representative, which was a subset of the raw association rules, could be easily used to restore the whole raw association rules. Definition of BAR was clearly defined and several proposition and theories related to BAR are proved too. Finally designed a BAR mining algorithm based on lexieo- graphic rule tree. The experiments show that the representative model based on BAR is lossless and is more compact than other existing concise association rules representatives.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049