位置:成果数据库 > 期刊 > 期刊详情页
在线商品评论有用性影响因素研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家自然科学基金(61273292)资助项目;国家自然科学基金青年基金(61305063)资助项目
中文摘要:

大脑是生物体内结构和功能最复杂的组织,其中包含上千亿个神经元。作为大脑构造的基本单位,神经元的结构和功能包含很多因素,其中神经元的几何形态特征就是一个重要方面。大脑中神经元的几何形态复杂多样,对其识别分类问题是一个难题。本文在模糊聚类的基础上根据神经元的几何形态建立了模糊集模型,并利用多数据库分类模型中的最优划分模型对模糊聚类分析法进行改进。将改进后的模糊聚类方法用于对神经元的识别分类,得到最优的分类结果。根据聚类的评价方法,与其他的聚类方法比较,证明了改进的模糊聚类方法能够得到更好的聚类效果。

英文摘要:

The brain is the most complex tissue in the structure and function of the organism,which contains hundreds of neurons.As a basic unit of the structure of the brain,the structure and function of neurons contain many factors,among which the geometric feature is an important aspect.The morphology of the neurons in brain is so complicated and diversiform that it is a problem to recognize the category of them.Here,we first establish the fuzzy set model based on fuzzy clustering according to the geometry of neurons.We use the optimal classification model of multi-database classification model to improve the fuzzy clustering method and classify the neurons.Then we can obtain the optimal classification result.According to the evaluation method of clustering,we can verify that the improved fuzzy clustering method can get better clustering effect compared with other methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049