位置:成果数据库 > 期刊 > 期刊详情页
一种基于预处理技术的约束满足问题求解算法
  • ISSN号:0254-4164
  • 期刊名称:计算机学报
  • 时间:0
  • 页码:919-926
  • 语言:中文
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,沈阳110004, [2]吉林大学计算机科学与技术学院符号计算与知识工程教育部重点实验室,长春130012
  • 相关基金:本课题得到国家自然科学基金重大项目(60496320,60496321)、国家自然科学基金(60773097,60873148)、新世纪优秀人才支持计划项目基金、吉林省科技发展计划项目基金(20060532,20080107)、吉林省青年科研基金(20080107,20080617)及东北师范大学自然科学青年基金(20081003)资助.
  • 相关项目:扩展规则推理方法研究
中文摘要:

针对最小完工时间的流水车间作业调度问题,提出了一种自适应混合粒子群进化算法——AHPSO,将遗传操作有效地结合到粒子群算法中.定义了粒子相似度及粒子能量,粒子相似度阈值随迭代次数动态自适应变化,而粒子能量阈值与群体进化程度及其自身进化速度相关.此外,针对算法运行后期进化速度慢的缺点,提出了一种基于邻域的随机贪心策略进一步提高算法的性能.最后将此算法在不同规模的实例上进行了测试,并与其他几种具有代表性的算法进行了比较,实验结果表明,无论是在求解质量还是稳定性方面都优于其他几种算法,并且能够有效求解大规模车间作业问题.

英文摘要:

A hybrid self-adaptive algorithm is proposed to solve the flow shop scheduling problem with the objective of minimizing makespan, which combined the particle swarm optimization algorithm and genetic operators together. The particle similarity and particle energy are defined. The threshold of particle similarity dynamically changes with iterations and the particle energy depends on the swarm evolving degree and the particle's evolving speed. In order to improve the proposed algorithm performance further, a neighborhood based random greedy search strategy is introduced to overcome the shortcoming of evolving slowly in the later running phase. Finally, the proposed algorithm is tested on different scale benchmarks and compared with the recently proposed efficient algorithms. The result shows that the solution quality and the stability of the HPGA both precede the other two algorithms. It can be used to solve large scale flow shop scheduling problem.

同期刊论文项目
期刊论文 66 会议论文 2
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433