位置:成果数据库 > 期刊 > 期刊详情页
基于Huber M估计的鲁棒Cubature卡尔曼滤波算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TN911[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]哈尔滨工程大学理学院,哈尔滨150001, [2]哈尔滨工程大学自动化学院,哈尔滨150001
  • 相关基金:国家自然科学基金重点项目(60834005);国家自然科学基金青年科学基金项目(61004130);中国博士后科学基金项目(2012M510925,2013T60348,2013M530145);中央高校基本科研业务费项目.
中文摘要:

Cubature卡尔曼滤波器(CKF)在非高斯噪声或统计特性未知时滤波精度将会下降甚至发散,为此提出了统计回归估计的鲁棒CKF算法。推导出线性化近似回归和直接非线性回归的鲁棒CKF算法,直接非线性回归克服了观测方程线性化近似带来的不足。具有混合高斯噪声的仿真实例比较了3种Cubature卡尔曼滤波器的滤波性能,结果表明这两种鲁棒CKF滤波精度及估计一致性明显优于CKF,直接非线性回归的CKF的鲁棒性更强,滤波性能更好。

英文摘要:

A class of robust Cubature Kalman filter(CKF) algorithm with statistical regression is proposed to solve the problem that the conventional CKF declines in accuracy and further diverges when the noise is not Gaussian noise or its prior statistic is unknown. Two kinds of robust CKFs with linear approximation regression or not are deduced and filtering steps are designed. The directly nonlinear regression overcomes the shortcoming of CKF with linear approximation of measurement align. Simulation example with a model of mixed Gaussian noise analyzes and contrasts the performances of filter with the three kinds of Cubature Kalman Filter. The results show that the two robust Cubature Kalman filters outbalance the conventional CKF in the accuracy and consistency of filtering, and the robust CKF without linear approximation owns stronger robustness and better performance compared with the other robust CKF.

同期刊论文项目
期刊论文 95 会议论文 9 专利 16
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961