为充分利用双电机独立驱动电动汽车两侧电机独立可控这个特点来提高车辆稳定性,在研究汽车动力学与稳定性特点的基础上,利用MATLAB/Simulink建立了包括任意路径下的单点预瞄驾驶员模型和"魔术公式"轮胎模型在内的8自由度的"人-车"闭环动力学仿真平台。运用滑模变结构控制原理,分别设计了以两侧电机为执行机构,以横摆角速度、质心侧偏角和横摆角速度与质心侧偏角联合为控制变量的3种等速趋近滑模变结构控制器,在仿真平台进行了稳定性控制的仿真。结果表明,3种控制器均可有效提高汽车极端工况下的操纵稳定性,其中,又以横摆角速度与质心侧偏角为联合控制变量的控制器效果最好。
For fully taking the advantage of the feature of independence and controllability of two side mo- tors in two-motor independent drive electric vehicle to enhance its stability, an eight-DOF human-vehicle closed- loop dynamics simulation platform is set up, incorporating single-point preview driver model for arbitrary path and 'magic formula' tire model. Based on sliding mode variable structure control theory, three different sliding mode variable structure controllers with constant approaching rate are designed with two side motors as actuators and yaw rate, mass-center sideslip angle and both yaw rate and mass-center sideslip angle as control variables respectively. The results of stability control simulation show that all three different controllers can effectively enhance the handling stability of vehicle in extreme working conditions, among which, the controller with both yaw rate and mass-center sideslip angle as control variables achieves the best results.