位置:成果数据库 > 期刊 > 期刊详情页
一类统计模型下{0,1}-函数类学习的样本复杂度研究
  • ISSN号:1002-6487
  • 期刊名称:《统计与决策》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国地质大学数学与物理学院,武汉430074
  • 相关基金:国家自然科学基金资助项目(60672049)
关键词: 样本复杂度, VC维
中文摘要:

文章研究的学习模型是可能近似正确(PAC)模型的一个推广变形。在这一模型下,文章研究了函数类学习的样本复杂度问题,其中包含了该函数类有限和无限两种情形的讨论;证明了这一函数类的任一样本误差最小化(SEM)算法L都是其学习算法;给出了算法L的样本复杂度的一个上界,同时也给出了其估计误差的一个上界,并予以证明。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《统计与决策》
  • 北大核心期刊(2011版)
  • 主管单位:湖北省统计局
  • 主办单位:湖北省统计局统计科学研究所
  • 主编:李明星
  • 地址:武汉市武昌区松竹路28号万达环球国际中心B座29楼
  • 邮编:430071
  • 邮箱:tjyjc@vip.163.com tjyjc3220@sohu.com
  • 电话:027-87818776 87814524
  • 国际标准刊号:ISSN:1002-6487
  • 国内统一刊号:ISSN:42-1009/C
  • 邮发代号:38-150
  • 获奖情况:
  • 连续四届入选全国中文核心期刊,全国首届优秀经济期刊,中国社科期刊精品数据库来源期刊,中文科技期刊数据库来源期刊
  • 国内外数据库收录:
  • 中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国国家哲学社会科学学术期刊数据库,中国北大核心期刊(2000版)
  • 被引量:48658