位置:成果数据库 > 期刊 > 期刊详情页
基于滑动窗口的多变量时间序列异常数据的挖掘
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学计算机软件与理论研究所,西安710049, [2]河北经贸大学计算机中心,石家庄050061
  • 相关基金:国家自然科学基金资助项目(60173058)
中文摘要:

与其它多变量时间序列(MTS)子序列显著不同的子序列,称为异常子序列(含异常数据).该文提出了一种基于滑动窗口的MTS异常子序列的挖掘算法,使用扩展的Frobenius 范数来计算两个MTS子序列之间相似性,使用两阶段顺序查询来进行K-近邻查找,将不可能成为候选异常子序列的MTS子序列剪去,对上海证券交易所股票交易情况MTS数据集进行了异常子序列(含异常数据)挖掘,结果表明了算法的有效性.

英文摘要:

Multivariate time series (MTS) subsequences, which differ significantly from the remaining MTS subsequences, are referred to as outlier subsequences. Tthe mining method for MTS outlier subsequences based on sliding window is proposed. An extended Frobenius norm is used to compare the similarity between MTS subsequences, K-NN searches are performed by using two-phase sequential scan, and MTS subsequences which are not possible outlier candidates are pruned which reduce the number of computations and comparisons. The MTS datasets of stock market is used for outlier mining, the results show the effectiveness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139