位置:成果数据库 > 期刊 > 期刊详情页
一个基于Web访问路径聚类的智能推荐系统
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学电子与信息工程学院,陕西西安710049
  • 相关基金:国家自然科学基金资助项目(60173058)
中文摘要:

提出了一个基于Web用户访问路径聚类的智能推荐系统.系统使用基于代理技术的结构,由离线的数据预处理和基于用户访问路径的URL聚类以及在线推荐引擎两部分组成.提出了一个基于用户浏览兴趣的推荐规则集生成算法,在度量用户浏览兴趣时综合考虑了用户浏览时间和对该页面的访问次数.提出了一个基于推荐规则集和站点URL路径长度的URL推荐算法.实验表明,该算法比使用基于关联规则和基于用户事务的推荐算法的精确性有较大幅度的提高.

英文摘要:

An intelligent recommendation system is proposed based on clustering of Web user's navigation path. The system uses an architecture based on proxy techniques, and consists of two subsystems, i. e. , the offline subsystem, including data preparation and URL clustering based on user's browsing paths, and the online subsystem, including a recommendation engine and a Web HTYP server. A algorithm for generating recommendation rule set is proposed based on the user's browsing interest, which is measured by considering synthetically both the user's browsing time and the number of hits on the Web page. A recommendation algorithm is presented based on recommendation nile set and the length of Web site URLs. The experiments show that, comparing with the recommendation algorithms based on association rule or on user transaction, the algorithm precision is improved greatly.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960