位置:成果数据库 > 期刊 > 期刊详情页
基于MCKD-EMD的风电机组轴承早期故障诊断方法
  • ISSN号:1006-6047
  • 期刊名称:《电力自动化设备》
  • 时间:0
  • 分类:TM315[电气工程—电机]
  • 作者机构:华北电力大学电气与电子工程学院,河北保定071003
  • 相关基金:国家自然科学基金资助项目(51277074)
作者: 赵洪山, 李浪
中文摘要:

风电机组轴承处于早期故障阶段时,特征信号往往比较微弱,并且受环境噪声及信号衰减的影响严重,因此轴承早期故障特征一直难以提取。经验模态分解(EMD)在轴承的故障特征提取中已经得到了广泛的应用,但其在强背景噪声干扰下对轴承早期故障特征的提取具有一定的局限性。针对这一问题,考虑到最大相关峭度解卷积(MCKD)算法可凸显出轴承振动信号中被噪声所掩盖的故障冲击脉冲,非常适用于轴承早期故障信号的降噪处理,因此将MCKD与EMD相结合用于轴承早期故障诊断。用MCKD对强噪声轴承信号进行降噪,然后对降噪后的信号进行EMD,选取敏感本征模态函数(IMF)并计算其包络谱,通过分析包络谱中幅值凸出的频率成分判断故障类型。仿真和试验分析结果验证了所提方法的有效性和准确性。

英文摘要:

Since the characteristic signals of the incipient bearing fault of wind turbine are weak and seriously affected by the environmental noises and signal attenuation,it is difficult to extract them. Though EMD( Empirical Mode Decomposition) is widely used in the bearing fault feature extraction, it is not applicable to the feature extraction of incipient bearing fault when the background noise is strong. As MCKD(Maximum Correlated Kurtosis Deconvolution) algorithm can highlight the fault impact pulses of the bearing vibration signals masked by noises,it is combined with EMD to diagnose the incipient bearing fault.MCKD is applied to subdue the strong background noises and the de-noised signals are then treated by EMD to obtain the most sensitive IMFs(Intrinsic Mode Functions) and calculate the envelope spectrums,which is then analyzed to identify the frequency components with bigger amplitude for determining the fault type. The effectiveness and correctness of the proposed method are verified by simulation and experiment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电力自动化设备》
  • 中国科技核心期刊
  • 主管单位:中国华电集团公司
  • 主办单位:南京电力自动化研究所 国家电力公司南京电力自动化研究所有限公司 国电南京自动化股份有限公司
  • 主编:吴济安
  • 地址:南京高新技术产业开发区星火路8号
  • 邮编:210032
  • 邮箱:epae@sac-china.com
  • 电话:025-83418700-3321 83420237
  • 国际标准刊号:ISSN:1006-6047
  • 国内统一刊号:ISSN:32-1318/TM
  • 邮发代号:28-268
  • 获奖情况:
  • 第三届华东地区优秀期刊,中国电力报刊协会优秀期刊,江苏期刊方阵双效期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:29852