变压器油箱表面测得的振动信号是各个振源的混合信号,直接加以分析,不能确定不同部件的运行状况。而传统盲源分离方法难以解决信号分析中相关源信号盲分离、欠定盲分离等问题。鉴于此,提出基于集成经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)与负熵准则的欠定盲源分离算法。首先,利用EEMD方法对变压器振动信号进行分解.得到若干本征模态函数(Intrinsic Mode Function,IMF),并采用邻近奇异值差值法估计混合信号中源信号个数;然后,根据负熵准则选取独立性较好的IMF分量,组成新的测量信号;最后,对新的测量信号进行盲分离。利用实测变压器振动信号对该算法进行了验证。