梯度向量流模型(GVF Snake)在图像处理领域取得较好的效果.但它简单的迭代运算方法,其收敛速度慢,限制了其应用.针对梯度向量场的计算,提出一种基于BFGS算法求解力场的方法,给出详细的求解过程并并且通过计算机仿真进行数值求解,最后将改进后的GVF Snake模型用于图像处理.结果表明,BFGS-GVF建立的梯度向量场性能较好.与图像处理中的牛顿几何轮廓算法、CV活动轮廓算法及IALM-GVF Snake算法进行对比,BFGS-GVF Snake算法能得到清晰、光滑的图像轮廓.
Gradient vector flow has achieved good results in image processing. But the simple iterative computing method, result in slow convergence speed, restrictions its applications. In order to explore the effective solving scheme for the gradient vector field, this paper proposes a method based on BFGS algorithm for gradient vector field calculation. The numerical solving process is given in detail and which is used in image processing task. Experimental results show that the BFGS-GVF algorithm shows a better performance of gradient vector field. Compared with generlized Newton-Type methods for energy formulation, CV active contour, IALM-GVF Snake algorithm, BFGS-GVF Snake algorithm can obtain clear and smooth contour.