应用临界点理论,研究一类超线性时滞差分方程组△u(n)=-f(u(n-T))的非平凡周期解的存在性与多重性,其中u∈Rm,f∈C(Rm,Rm),T为给定的正整数.f(u)=▽_uF(u),当f(u)在原点与无穷远点处满足超线性条件时,得到上述方程以4T+2为周期的非平凡周期解存在性与多重性的充分条件.文章结果推广了邢秋萍等的2012年所得的相关结论.
Using critical point theory,we study the existence and multiplicity of periodic solutions to delay difference equations △u(n) =-f(u(n)),namely,u∈Rm,f∈ C(Rm,Rm) and f(u) = ▽_uF(u).Given a positive integer T,when f(u) grows superlinearly both at zero and at infinity,we obtain some sufficient conditions for the existence and multiplicity of AT + 2 periodic solutions.Our results generalize XING's related conclusion in 2012.