本文提出了一种"金属栅-开口环/硅环-金属栅"结构的透射式超表面偏振控制器,研究了入射角度和抽运光对该器件传输及偏振态控制性能的影响.研究结果表明,当线偏振太赫兹波垂直入射时,可对0.39—1.11 THz频段的太赫兹波实现偏振方向90°旋转,偏振旋转效率为99%,损耗为1 d B.对于斜入射的情况,偏振转换性能在0—60?范围内基本保持不变,且透过率达到90%以上.同时,通过调控抽运光强度的方式,该器件能够实现对透射与反射太赫兹光束的强度调制,调制深度均达到90%,且可以实现太赫兹波偏振分束功能.该器件可以作为未来太赫兹空间光通信和信息处理的宽带、角度不敏感、可调谐的偏振转换器和分束器.
Polarization is one of the basic properties of electromagnetic wave conveying valuable information about signal transmission and sensitive measurements. Manipulations of polarization state and amplitude have aroused a lot of research interest in many different fields, especially in the terahertz(THz) regime. Although many researches on THz polarization controller have been carried out, their transmission losses are still difficult to lower in a broad bandwidth.And there are few reports on THz polarization controller which can rotate the polarization state and split beams at the same time. Multifunctional THz devices are required to meet the needs of the progress of THz technology and its applications. In order to overcome this constraint, semiconductor silicon is integrated into the proposed structure to manipulate the polarization state and the amplitude, because of its optical properties with the external pump light. Here,according to the electromagnetic resonance between split rings and silicon rings in Fabry-Pérot-like cavity, we propose a metasurfaces-based terahertz polarization controller. The unite cell structure is composed of metal grids-split ring/Si ring-metal grids spaced by silica layers. By using the finite element method in CST Microwave Studio, we simulate the transport and polarization properties under different conditions. The results show that a linear polarization state can be nearly perfectly converted into its orthogonal one from 0.39 to 1.11 THz with a transmission loss of 1 d B, which fits well to the one of multiple-beam interference theory. Then we study the properties of the proposed metasurface structure for oblique incidence. The property of rotating polarization basically keeps stable even at an incident angle of 60?from 0.52 to 1.05 THz. At the end of the paper, the polarization splitting feature of the device is discussed in the THz regime. The results demonstrate that the transmitted and reflected beam power of the device can be tuned by changing the pump light power. The