为增加轮式移动焊接机器人稳定性、负载能力和降低控制复杂度,提出了一种四轮驱动全轮差速转向移动焊接机器人机构,介绍了该机构差速转向原理,证明该机构无转向侧滑。采用非完整约束方法建立了其差速转向误差模型,并在该模型基础上对其进行了直线-圆弧-直线轨迹数值仿真,结果为转角误差0.002 137°,转动中心坐标误差小于0.012mm。仿真结果表明该模型满足焊接中的位置精度要求。
In order to raise the stabilization, load capacity of mobile welding robots and to reduce the con- trol complexity, a four wheel drive all wheel differential steering mobile welding robot mechanism was pro- posed.The differential steering principles of this mechanism were introduced and proved this mechanism had no sideslip.The differential steering deviation model was built with nonholonomic constraint method.Based on this model,a numerical simulation analysis of straight-arc-straight trajectory was presented.As results,the ro- tation angle deviation is as 0.002 137° and the deviation of rotation center is under 0.012 mm.The simulation results indicate that the model satisfies the position accuracy requirements.