将降雨过程数值化并对雨水入渗的物理过程进行划分;选定雨水吸附率、渗透速度、空隙率/连通空隙率、结构层厚度等路面材料参数以及降雨重现期和历时等降雨参数,基于气象学和水力学理论建立透水沥青路面的储水一渗透模型,提出相应的功能设计目标,并对透水路面的效能进行计算和分析.结果表明:所建模型能够针对不同地域的气象和降雨特点对透水路面的储水、渗透功能进行预估和评价;透水沥青路面最大储水量出现时间滞后于最大降雨强度发生时间;当透水路面结构不满足该降雨条件下的储水和渗透功能要求时,可以增大路面储水结构层的厚度,或者在路面结构中铺设纵向排水管道.
Rainfall process was numeralized and the physical process of rainwater infiltration was divided into four steps. Pavement materials parameters such as rainwater adsorption rate, permeation rate, air voids content/connected air voids content, pavement thickness and precipitation parameters such as rainstorm return period, rainfall duration were selected for permeable asphalt pavement water storage- infiltration model based on the theory of meteorology and hydraulics, and the target of function design was put forward. Then, the efficiency of water storage and infiltration for permeable asphalt pavement was calculated and analyzed. Results show that the model can predict and evaluate the function of water storage and infiltration for permeable pavement in different regions on different meteorological and rainfall condition. Maximum water storage occurs in the pavement behind the time the rainfall intensity reaches its peak. The water storage structure layer can be thickened or longitudinal drainage pipe can be employed in the pavement structure if the permeable pavement structure can not meet the demand of water storage or infiltration function for some precipitation condition.