作为新奇灵活结构的一种特殊类型, tensegrity 在象材料科学的如此的领域里为许多潜在的应用保持诺言, biomechanics,民用并且太空工程。菱形的系统是 tensegrity 结构,每工具条在组成四个字符串的一个菱形的最长的对角线的一个重要的类。在这份报纸,我们基于许多 tensegrity 结构能被装配一个酒吧构造的想法探讨菱形的结构的设计方法基本房间。由分析菱形的房间的性质,也就是,我们首先直接开发二个新奇计划枚举计划和房间替换计划。另外,一个灵巧、有效的方法被介绍把几个菱形的系统集成到更大的 tensegrity 结构。说明这些方法的应用程序,一些新奇菱形的 tensegrity 结构被构造。关键词 Tensegrity - 结构的设计 - 集合方法 - 灵活结构工程被国家自然科学基础支持中国(10732050 ) ,清华大学(2009THZ02122 ) ,和公民中国(973 )(2010CB631005 ) 的 Basic 研究节目。
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.