部分地,聪明切割的过程,缺陷由尺寸描绘了的结合的效果和在切开前后的内部压力上的 2 纸被使用破裂力学模型学习。有大尺寸的结合的缺陷是容易的引起缺点生长的严重偏差,这被发现,当切开时,导致薄层的一个非转移的区域。在结合的缺陷的内部压力是很小的一个实际聪明切割的过程,大界面的缺点总是在切开的过程支持缺点生长。同时,增加结合的缺陷的内部压力减少在切开前的缺点生长和它的偏差。stiffener 限制的松驰的机制被建议澄清结合的缺陷的效果。而且,当结合的缺陷是在场的时,切开的过程的进步被分析。在切开以后,有大尺寸和高内部的压力的那些结合的缺陷在高温度的退火期间为薄电影的 blistering 是脆弱的。
In Part 2 of the paper on the Smart-Cut process, the effects of bonding flaws characterized by the size and internal pressure before and after splitting are studied by using fracture mechanics models. It is found that the bonding flaws with large size are prone to cause severe deviation of defect growth, leading to a non-transferred area of thin layer when splitting. In a practical Smart-Cut process where the internal pressure of bonding flaws is very small, large interfacial defects always promote defect growth in the splitting process. Meanwhile, increasing the internal pressure of the bonding flaws decreases the defect growth and its deviation before splitting. The mechanism of relaxation of stiffener constraint is proposed to clarify the effect of bonding flaws. Moreover, the progress of the splitting process is analyzed when bonding flaws are present. After splitting, those bonding flaws with large size and high internal pressure are vulnerable for the blistering of the thin film during high-temperature annealing.