采用基于Morozov偏差原理的后验策略来选择最优正则参量,并采用此方法对单峰和多峰分布颗粒系的模拟电场自相关函数进行了反演,结果表明,对于单峰颗粒体系,当电场自相关函数的扰动误差小于0.05时,反演得到的峰值准确,当电场自相关函数的扰动误差大于0.05时,反演得到的峰值偏离所模拟的颗粒粒径.正则参量初始值在0.00002~2范围内,在反演所得的峰值准确的基础上,正则参量初始值越小,反演得到的分布宽度越窄.收敛误差在0.00005~50范围内,在保持反演结果稳定的基础上,收敛误差取值越大,反演得到的分布宽度越窄.对于多峰颗粒体系,当颗粒系中的颗粒粒径差别较小时,峰值向平均值偏移,当颗粒系中的颗粒粒径差别较大时,小颗粒粒径分布以噪音的形式出现.
A Posteriori Choice Strategies based on Morozov discrepancy principle is adopted in order to choose the Optimum Regularization Parameter in the Inverse Algorithm of the Photon Correlation Spectroscopy particle sizing techniques.Using the method analyzed the simulation experimental data of single peake and multimodel peak particles system are analyzed.For the single peake particles system,the peake value is correct when the noise of the experimental data varies from 0 to 0.05.The peake value is incorrect when the noise of the experimental data is greater than 0.05.The distributing width decreases with the decrease of the original value of Regularization Parameter when the original value of Regularization Parameter varies from 0.000 02 to 2.The distributing width decreases with the increase of the convergence error when the convergence error varies from 0.000 05 to 50.For the multimodel peak particles system,the peak value incline to the average value when the particles diameter discrepancy is small.The smaller particle size distributing appear as the noise when the diameter discrepancy is large.