利用 R(p^m ,k)= Fp^m [u]/< u^k >上任意长度的(1+λu)常循环码的挠码得到了 R( p^m ,k)上任意长度的(1+λu)常循环码的齐次距离的界,并确定了 R(p^m ,k)上某些(1+λu)常循环码的齐次距离的准确值,其中λ是R( p^m ,k)上的单位。此外,定义了从 R^N(p^m ,k)(Homogeneous 距离)到 F pm^pm(k -1)^N(Hamming 距离)的一个新的保距Gray 映射,得到R(p^m ,k)上任意长度的线性(1+λu)常循环码的 Gray 像是Fp^m上的线性码,构造了F2、F3和F4上的一些最优线性码。
Based on the torsion codes of a (1 + λu)constacyclic code with arbitrary length over R(p^m ,k) = Fp^m [u]/〈u^k〉,a bound for the homogeneous distance of a (1 + λu) constacyclic code with an arbitrary length over R( p^m ,k) is obtained and the exact homogeneous distances of some (1 + λu) constacyclic codes over R( p^m ,k) are determined ,where λ is a unit of R(p^m ,k) .Furthermore , a new distance‐preserving Gray map from R ( p^m ,k)^N (Homogeneous distance) to Fp^m(k - 1) N pm (Hamming distance) is defined .It is proved that the Gray image of a linear (1 + λu) constacyclic code of arbitrary length over R(p^m ,k) is a linear code over Fpm ,and some optimal linear codes over F2 ,F3 , and F4 are constructed under this Gray map .