位置:成果数据库 > 期刊 > 期刊详情页
基于粒子群寻优的支持向量机番茄红素含量预测
  • ISSN号:1000-1298
  • 期刊名称:《农业机械学报》
  • 时间:0
  • 分类:S126[农业科学—农业基础科学] S641.3[农业科学—蔬菜学;农业科学—园艺学]
  • 作者机构:[1]合肥工业大学电气与自动化工程学院,合肥230009, [2]合肥学院机器视觉与智能控制实验室,合肥230601, [3]浙江大学生物系统工程与食品科学学院,杭州310058
  • 相关基金:国家自然科学基金资助项目(30972036)
中文摘要:

应用支持向量机(SVM)通过色差值对番茄果实番茄红素含量预测进行建模,解决预测过程受影响因素多、参数互相关联、难以建立精确模型问题。为提高预测精度,将SVM参数选择和输入变量的选取看作组合优化问题,通过赤池信息准则(AIC)构造组合目标优化函数,采用粒子群算法(PSO)进行目标函数搜索,提高了搜索效率。对采后储藏不同成熟度番茄进行的测量表明,所提预测建模算法在番茄红素的预测中具有良好的性能,为番茄红素的便捷、无破坏性测量提供了一种方法。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884