假设{Zn;n=0,1,2,…}是一个随机环境中的分枝随机游动(即质点在产生后代的过程中,还作直线上随机游动),ξ={ξ0,ξ1,ξ2,…}为环境过程.记Z(n,x)为落在区间(-∞,x]中的第n代质点的个数,fξn(s)=∑j=0^∞pξn(j)s^j为第n代个体的生成函数,mξn=f′ξn(1).证明了在特定条件下,存在随机序列{tn}使得Z(n,tn)(∏i=0^n-1mξi)^-1均方收敛到一个随机变量.对于依赖于代的分枝随机游动,仍有类似的结论。
Suppose {Zn;n = 0,1,2,…} is a branching random walk in the random environment,and ξ = {ξ0,ξ1,ξ2,…} is the environment process.Let Z(n,x) be the number of the nth generation located in the interval(-∞,x],fξn(s) = ∑ ∞ j = 0 pξn(j) sj be the generating function of the distribution of the particle in the nth generation,and mξn = f ξ'n(1).We show that under the specific conditions,there exists a sequence of random variables {tn},so that Z(n,tn)(∏ n-1 i = 0 m ξi)-1 converges in L2.For branching random walks in varying environments,we have similar results.