考虑如下m点边值问题解的存在性: u″=f(t,u,u′)+e(t) (0<t<1) u(0)=0,u(1)=^m-2∑i=1 αiu(ζi) 其中:f:[0,1]×R^2→R连续;e(t)∈C[0,1];α1>0,i=1,2,…,m-2;0<ζ1<ζ2<…<ζm-2<1;^m-2∑i=1 αiζi≠1.通过对一族边值问题解的先验估计,利用Leray—Shauder连续性定理,得到解的存在性.
This paper is concerned with the problem of existence of a solution for m - points boundary value problem : u″=f(t,u,u′)+e(t) (0〈t〈1) u(0)=0,u(1)=^m-2∑i=1 αiu(ζi) The existence theorems of the solution be obtained by using Leray - Shauder continuous theorem under some conditions.