基于DEFORM-3D有限元平台建立了TA15钛合金大型复杂整体构件预锻成形过程的有限元模型,研究了成形参数对预锻成形过程中变形体组织演化和等轴α相晶粒尺寸的影响规律。结果表明:随着变形的进行,等轴α相晶粒发生细化;在950-980℃范围内变形时,随着变形温度的升高,初生α相晶粒尺寸逐渐增大,在980℃条件下变形时,预锻件整体范围内晶粒尺寸波动较大;随着变形速率的增加,初生α相晶粒尺寸减小;在0.5和1.0mm/s条件下成形时,温度对晶粒尺寸影响比较小,而在0.1mm/s条件下变形时,随着温度的升高,晶粒长大比较严重;随摩擦因子的增大,平均晶粒尺寸有所减小,整个锻件晶粒尺寸分布的不均匀性增加。
A finite element (FE) model was established to investigate the preforming process of TA15 titanium alloy complex component based on DEFORM-3D platform, and the influence law of forming parameters on the microstructure evolution and the equiaxed a grain size during performing was simulated and analyzed. Results show that the equiaxed α-phases are refined as deformation proceeds. With the increase of temperature, the primary α-phase grain size increases when deformed between 950 ℃ and 980 ℃. The grain size distribution is inhomogeneous when deformed at 980 ℃. With the increasing of the deformation rate, the primary α-phase grain size decreases. Forming at deformation rates of 0.5 and 1.0 mm/s, the effect of temperature on the grain size is small. The primary α-phase grain size increases more rapidly with the increase of temperature at the deformation rate of 0.1 mm/s. The average grain size of α-phase decreases with the increase of the friction factor, and the inhomogeneity of grain size distribution increases.