在房间温度,有 simplepyrazole (C_3H_4N_2 ) 的二新不同 Qxovanadium 建筑群作为配位体被综合。VO (pz )_4 (SO_4 )-H_2O (1 )(pz:唑) 作为终端 ligands.V_2O_2 是与唑复杂的 amono 原子的 oxovana-dium ((mu-Pz )(mu-OOSO_2 )(mu-OCH_3 )(pz )(2 ) 4 是包含三座不同的桥的双性人原子的含氧的钒建筑群,它分别地是 pyrazolate,硫酸盐和 methoxy。二建筑群被红外,元素的分析,热分析和 X 光检查衍射描绘。水晶建筑群的结构的数据 1 和 2 如下被给:建筑群 1,斜方晶, Pna2_A, a=14.547 (2 ) A, b =10.895 (2 ) A, c -11.835(2) A;alpha=beta=gamma=90 deg, V=1875.8 (5 ) A~3, Z = 4,贝它 =0.0485, _WR_2= 0.1092。建筑群 2 , triciinic , Pi , =8.377 ( 2 ) A , b =9.928 ( 2 ) A , c = 16.527 ( 3 )一, =85.54 ( 3 )°,beta= 80.92 ( 3 )°,gamma= 87.92 ( 3 )°, R_1= 0.1461 , _WR_2 - 0.4444 。学习ofnon热的运动分解证明为建筑群 1 ,分别地,二步的可能的反应机制是成核和生长 n-1/3 ,和三维的扩散 n-2 并且运动方程可以被表示为 da/dl =(A/贝它) exp (-E/R7){1/3(1-alpha) Hn ( 1-alpha )}~( -2))and d alpha/dT=(A/贝它) exp (-E/RT){3/2(1-alpha)~(2/3)[1-( 1-alpha )~( 1/3 )]~ 1 }分别地;为建筑群 2,二步的可能的反应机制是化学反应, andthree 维的扩散 n-2 分别地;运动方程可以被表示为 d alpha/dT=(A/ 贝它) exp (-E/RT)[(1-alpha)~2], 和 d alpha/dT =(A/ 贝它) exp (-E/RT){3/2(1-alpha)~(2/3)[1-(1-alpha)~(1/3)]~(-1)}, 分别地。
Abstract At room temperature, two new different oxovanadium complexes with simple pyrazole (C3H4N2) as ligand were synthesized. VO(pz)4(SO4)·H2O (1) (pz: pyrazole) is a mono-nuclear oxovanadium complex with pyrazole as terminal ligands. V2O2(μ-pz)(μ-OOSO2)(μ-OCH3)(pz)4 (2) is bi-nuclear oxovanadium complex containing three different bridges, which are pyrazolate, sulphate and methoxy, respectively. The two complexes were characterized by IR, elemental analyses, thermal analyses and X-ray diffraction. The crystal structural data of the complexes 1 and 2 are given as follows: Complex 1, orthorhombic, Pna21, a = 14.547(2) A, b =10.895(2) A, c=11.835(2) A; α=β=γ=90°, V=1875.8(5) A3, Z = 4, R1 = 0.0485, wR2= 0.1092. Complex 2, triclinic, P1, a =8.377(2) A, b =9.928(2) A, c = 16.527(3) A, α = 85.54(3)°,β= 80.92(3)°, γ= 87.92(3)°,R1 = 0.1461, wR2 = 0.4444. The study of non-thermal kinetic decomposition shows that, for complex 1, the possible reaction mechanisms of the two steps are nucleation and growth n=1/3, and three-dimensional pervasion n=2, respectively, and the kinetic equations may be expressed as dα/dT = (Aβ)exp(-E/RT){1/3(1-α){-In(1-α)]^-2} and dα/d T= (A/β)exp(-E/RT){3/2(1-α)^2/3 {1-(1-α)^1/3]^-1}, respectively; for complex 2, the pos- sible reaction mechanisms of the two steps are chemical reaction, and three-dimensional pervasion n=2, respectively; the kinetic equations may be expressed as dα/dT = (A/β)exp(-E/RT)[(1-α)^2], and dα/d T = (A/β)exp(-E/RT){3/2(1-α)^2/3[1 -(1-α)^1/3]^-1}, respectively.