由于磁流变减振器数学模型滞环特性描述通常不能兼顾简洁、精确,而限制其实际工程应用,因此,设计用于数学模型,参数辨识和验证的几组不同的连续变化的激励振幅、频率和电流强度,并应用实物磁流变减振器进行动态特性测试。根据测试结果分析无电流输入以及激励位移、速度和电流强度变化时,磁流变减振器的弹性、阻尼、电流饱和等基本特征的动态非线性特性。依据试验分析结合非线性粘塑性模型和简单非线性Bingham模型,提出应用神经网络理论中神经元S型传递函数,实现减振器活塞运动方向发生变化时力-速度特性模型中阻尼力的平滑过渡:同时借鉴非线性滞环双粘性模型以活塞加速度方向的变化,判断压缩屈服和拉伸屈服两个不同过程的方法,建立描述磁流变减振器滞环特性的数学模型。进一步分析所建模型中可控阻尼力部分各个参数的物理意义。通过试验数据对S型滞环特性数学模型进行参数辨识,并重点分析速度-力特性曲线所形成滞环的斜率及宽度相关参数的可控特性,最后以试验数据验证S型滞环模型的正确性。
Because the mathematical model of magnetotheological damper (MRD) isn't simple and accurate enough to reflect dynamic hysteretic behavior for engineering application, according to diverse actuating amplitude, frequency, current, a MRD prototype is tested for parameter identification and verification, Based on the test data the nonlinear dynamic behavior of MRD elastic, damping and current saturation characteristic is analyzed by variable actuating displacement, velocity and current when MRD is controlled with current or without current. To make the force-velocity curve smooth when the direction changes, neural network sigmoid transfer function is utilized integrating the test investigation, nonlinear viscosity-plastic model and simple nonlinear Bingham model. Also, the compress and extension process is distinguished according to the accelerator direction as the nonliear bi-viscosity model. Based on mentions above the hysteretic behavior model of MRD is established. Then the physical meanings of several parameters for controllable damping force in model are studied. After identifying the parameters in sigmoid hysteretic model, the controllability of the parameters which affects the force-velocity hysteretic loop slope and width is researched especially. The sigmoid hysteretic model is verified by experimental data finally.