现有减振器模型多为简化模型,无法有效应用于工业生产中减振器阻尼力特性模拟.基于某系列汽车筒式液力减振器的实验数据,利用BP神经网络技术,建立了减振器内部结构参数与阻尼力-速度特性之间的非线性映射模型.该方法只需将减振器零部件特征参数作为模型输入,就可以得到阻尼力-速度特性,可以直接用于工业生产中减振器性能测试.自主开发的减振器性能仿真软件测试结果表明,该模型具备很好的阻尼力-速度特性模拟和预测能力,可以减少设计过程中的实验重复次数,提高了设计效率,模型精度可以通过增加实验数据得到不断提高.
Traditional simplified models of shock absorbers cannot effectively simulate the force-velocity performance of shock absorbers in industry fields.By using back-propagation(BP) neural network s nonlinear mapping ability,a nonlinear model to describe the relationship between the structure parameters and the force-velocity performance of shock absorbers was established based on the experimental data of vehicle tube hydraulic shock absorbers.The model can be directly applied in product tests with absorbers cha...