为提高RBF神经网络的交通流预测精度,提出基于混沌-RBF(Chaos-RBF,C-RBF)神经网络的交通流预测算法,该算法首先计算混沌相空间的嵌入维数和嵌入延迟,构造得到的相空间向量作为RBF神经网络的输入,其相空间次邻向量作为期望输出值,滚动训练得到神经网络的权值,然后以实际交通流作为输入,经由网络计算得到预测值。仿真结果表明该算法相比于RBF神经网络,预测精度提高96%,证明了该算法的有效性。