位置:成果数据库 > 期刊 > 期刊详情页
基于自适应遗传算法的脑电信号特征选择
  • 期刊名称:系统仿真学报, 2008年07期(EI)
  • 时间:0
  • 分类:R318[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:[1]上海交通大学电信学院仪器系820所,上海200240, [2]安徽建筑工业学院机械与电气工程系,合肥230022
  • 相关基金:国家自然科学基金(30570485)
  • 相关项目:胃肠道动力和生理参数无创检测技术及胃肠功能数字化研究
中文摘要:

针对脑机接口(BCI)研究中脑电信号的特征选择问题,本文提出了一种自适应的遗传算法(AGA)。它与标准遗传算法(SGA)的区别在于对交叉和变异概率进行自适应选择。在SGA中,采用固定的交叉和变异概率,因而容易造成早熟和局部收敛;而AGA对两种概率的自适应选择保留了种群的多样性,并且有利于全局收敛。为检验提出方法的有效性,将其与基于SGA的特征选择方法以及基于Fisher距离的滤波选择方法进行了比较,实验结果表明AGA的分类精度明显高于其它方法,获得了最好的模式识别性能。

英文摘要:

In brain-computer interfaces (BCIs), a feature selection approach using an adaptive genetic algorithm (AGA) was described. In the AGA, each individual among the population has its own crossover probability and mutation probability. The probabilities of crossover and mutation are varied depending on the fitness values of the individuals. The adaptive probabilities of crossover and mutation are propitious to maintain diversity in the population and sustain the convergence capacity of the genetic algorithms (GAs). The performance of the AGA was compared with those of the Standard GA (SGA) and the Filter method in selecting feature subset for BCIs. The results show that the classification accuracy obtained by the AGA is significantly higher than those obtained by other methods. Furthermore, the AGA has a higher convergence rate than the SGA.

同期刊论文项目
同项目期刊论文