解决了收敛数列连续函数保持性的一个逆问题.即对于f(D)中任一收敛数列{yn),必存在D中收敛数列{xn),使得{f(xn))是{yn)的子数列,其中D包含R,f(x)是D上的闭连续函数.
We solve an inverse problem of convergent number-sequence of continuous functions preservation, we prove that for any convergent number-sequence {yn} in f(D) , there exists a convergent number-sequence {xn } in D such that {f(xn) } is a subsequence of {yn } , where D R , f(x) is a closed continuous function on D.