文章指出了论文“A wide family of nonlinear filter functions with a large linear span”存在的问题,给出一个反例,同时得到如下结论:设a_是F2上以f(x)为极小多项式的n级m-序列,a为f(x)的一个根,a^δ为F2^n在F2上的正规元,1≤δ〈2^n-1。设2≤k≤n-2,令Гδ,k={xδxδ2^dxδ2^2d…xδ2^(k-1)d+G(Gx0,x1,…,x2^n-2)|deg(G(x0,x1,…,x2^n-2))〈k,gcd(d,n)=1},则以Гδ,k中的任意布尔函数作为非线性过滤函数作用在a_上得到的输出序列线性复杂度下界为(n k)。记F2^n在F2上的正规元的数量为v(n),则集合{xδxδ2^dxδ2^2d…xδ2^(k-1)d|1≤δ〈2^n-1,a^δ为F2^n在F2上的正规元,d〈n,gcd(d,n)=1}中互异函数的个数为φ(n)·v(n)/2。
In this paper, we point out the problems in "A wide family of nonlinear filter functions with a large linear span", give a counterexample, and get the following conclusions: Let a he a binary m-sequence of degree n with minimal polynomial f(x). Let a he a root of f(x), and a^δ a normal element in F2^n over F2 ,where 1≤δ〈2^n-1. Let k he a positive integer and 2≤ k ≤ n - 2. Set Гδ,k={xδxδ2^dxδ2^2d…xδ2^(k-1)d+G(Gx0,x1,…,x2^n-2)|deg(G(x0,x1,…,x2^n-2))〈k,gcd(d,n)=1} ,then forany F∈Гδ,k ,the linear complexity of the filtered sequence produced by F acting on a is lower hounded by (n k). Denote the number of normal elements in F2^n over F2 by v ( n), then the number of different elements in {xδxδ2^dxδ2^2d…xδ2^(k-1)d|1≤δ〈2^n-1, a^δ is a normal element of F2^n over F2, d 〈 n, gcd( d, n ) =1} is φ(n) ·v(n)/2.